On a degree sequence analogue of Pósa's conjecture

نویسندگان

  • Katherine Staden
  • Andrew Treglown
چکیده

A famous conjecture of Pósa from 1962 asserts that every graph on n vertices and with minimum degree at least 2n/3 contains the square of a Hamilton cycle. The conjecture was proven for large graphs in 1996 by Komlós, Sárközy and Szemerédi [17]. We prove a degree sequence version of Pósa’s conjecture: Given any η > 0, every graph G of sufficiently large order n contains the square of a Hamilton cycle if its degree sequence d1 ≤ · · · ≤ dn satisfies di ≥ (1/3+η)n+ i for all i ≤ n/3. The degree sequence condition here is asymptotically best possible. Our approach uses a hybrid of the Regularity-Blow-up method and the Connecting-Absorbing method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Pósa's Conjecture for Random Graphs

The famous Pósa conjecture states that every graph of minimum degree at least 2n/3 contains the square of a Hamilton cycle. This has been proved for large n by Komlós, Sarközy and Szemerédi. Here we prove that if p ≥ n−1/2+ε, then asymptotically almost surely, the binomial random graph Gn,p contains the square of a Hamilton cycle. This provides an ‘approximate threshold’ for the property in the...

متن کامل

Thomas ’ conjecture over Function Fields for degree 3 Volker

Thomas’ conjecture is, given monic polynomials p1, . . . , pd ∈ Z[a] with 0 < deg p1 < · · · < deg pd, then the Thue equation (over the rational integers) (X − p1(a)Y ) · · · (X − pd(a)Y ) + Y d = 1 has only trivial solutions, provided a ≥ a0 with effective computable a0. We consider a function field analogue of Thomas’ conjecture in case of degree d = 3. Moreover we find a counterexample to Th...

متن کامل

Thomas ’ conjecture over Function Fields par

Thomas’ conjecture is, given monic polynomials p1, . . . , pd ∈ Z[a] with 0 < deg p1 < · · · < deg pd, then the Thue equation (over the rational integers) (X − p1(a)Y ) · · · (X − pd(a)Y ) + Y d = 1 has only trivial solutions, provided a ≥ a0 with effective computable a0. We consider a function field analogue of Thomas’ conjecture in case of degree d = 3. Moreover we find a counterexample to Th...

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

How to avoid using the Regularity Lemma: Pósa's conjecture revisited

In this paper we investigate how the use of the Regularity Lemma and the Blow-up Lemma can be avoided in certain extremal problems of dense graphs. We present the ideas for the following well-known Pósa conjecture on the square of a Hamiltonian cycle. In 1962 Pósa conjectured that any graph G of order n and minimum degree at least 3n contains the square of a Hamiltonian cycle. In an earlier pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2015